releases: 8556054

This data as json

html_url id node_id tag_name target_commitish name draft author prerelease created_at published_at assets body repo 8556054 MDc6UmVsZWFzZTg1NTYwNTQ= 0.3 master csvs-to-sqlite 0.3 0 9599 0 2017-11-17T05:26:07Z 2017-11-17T05:33:39Z [] - **Mechanism for converting columns into separate tables** Let's say you have a CSV file that looks like this: county,precinct,office,district,party,candidate,votes Clark,1,President,,REP,John R. Kasich,5 Clark,2,President,,REP,John R. Kasich,0 Clark,3,President,,REP,John R. Kasich,7 (Real example from master/2016/20160607__sd__primary__clark__precinct.csv ) You can now convert selected columns into separate lookup tables using the new --extract-column option (shortname: -c) - for example: csvs-to-sqlite openelections-data-*/*.csv \ -c county:County:name \ -c precinct:Precinct:name \ -c office -c district -c party -c candidate \ openelections.db The format is as follows: column_name:optional_table_name:optional_table_value_column_name If you just specify the column name e.g. `-c office`, the following table will be created: CREATE TABLE "party" ( "id" INTEGER PRIMARY KEY, "value" TEXT ); If you specify all three options, e.g. `-c precinct:Precinct:name` the table will look like this: CREATE TABLE "Precinct" ( "id" INTEGER PRIMARY KEY, "name" TEXT ); The original tables will be created like this: CREATE TABLE "ca__primary__san_francisco__precinct" ( "county" INTEGER, "precinct" INTEGER, "office" INTEGER, "district" INTEGER, "party" INTEGER, "candidate" INTEGER, "votes" INTEGER, FOREIGN KEY (county) REFERENCES County(id), FOREIGN KEY (party) REFERENCES party(id), FOREIGN KEY (precinct) REFERENCES Precinct(id), FOREIGN KEY (office) REFERENCES office(id), FOREIGN KEY (candidate) REFERENCES candidate(id) ); They will be populated with IDs that reference the new derived tables. Closes #2 110509816
Powered by Datasette · Query took 0.99ms